An Analytical Approach to Fast Parameter Selection of Gaussian RBF Kernel for Support Vector Machine
نویسندگان
چکیده
The Gaussian radial basis function (RBF) is a widely used kernel function in support vector machine (SVM). The kernel parameter σ is crucial to maintain high performance of the Gaussian SVM. Most previous studies on this topic are based on optimization search algorithms that result in large computation load. In this paper, we propose an analytical algorithm to determine the optimal σ with the principle of maximizing between-class separability and minimizing within-class separability. An attractive advantage of the proposed algorithm is that no optimization search process is required, and thus the selection process is less complex and more computationally efficient. Experimental results on seventeen real-world datasets demonstrate that the proposed algorithm is fast and robust when using it for the Gaussian SVM.
منابع مشابه
MODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملAsymptotic Behaviors of Support Vector Machines with Gaussian Kernel
Support vector machines (SVMs) with the gaussian (RBF) kernel have been popular for practical use. Model selection in this class of SVMs involves two hyperparameters: the penalty parameter C and the kernel width sigma. This letter analyzes the behavior of the SVM classifier when these hyperparameters take very small or very large values. Our results help in understanding the hyperparameter spac...
متن کاملAcoustic detection of apple mealiness based on support vector machine
Mealiness degrades the quality of apples and plays an important role in fruit market. Therefore, the use of reliable and rapid sensing techniques for nondestructive measurement and sorting of fruits is necessary. In this study, the potential of acoustic signals of rolling apples on an inclined plate as a new technique for nondestructive detection of Red Delicious apple mealiness was investigate...
متن کاملMULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 31 شماره
صفحات -
تاریخ انتشار 2015